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The interaction between competition, 
learning, and habituation dynamics in 
speech perception

Abstract: Even though the outcome of the perception of phonological patterns is 
categorical, this process might still arise from continuous dynamics. Here, we 
propose a unified dynamical account of three types of behavior that are usually 
studied in isolation: short-term perceptual behavior, long-term perceptual habit-
uation, and even longer-term perceptual learning. We develop a model and test 
its predictions in two speech identification tasks on an acoustic continuum be-
tween the French words [sɛp] and [stɛp]. When presenting stimuli sequentially 
from one end of the continuum to the other, we found that the presentation order 
systematically changed the position of the perceptual switch from one word to the 
other. We also found that response times were slower and more variable around 
this perceptual switch, regardless of its position on the acoustic continuum. And, 
throughout the experiment, participants became more sensitive to small acoustic 
differences between stimuli. Our model can account for these results and for a 
surprising finding, namely that the initial presentation order affected responses 
even late in the experiment. Overall, our results point to the importance of the 
relation between fast processes responsible for competition, and slow processes 
responsible for habituation and learning in explaining how listeners can perceive 
speech categorically in a way that is both flexible and robust.
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1 Introduction
Speech is inherently variable. One mechanism that is thought to cope with this 
variability is categorical speech perception, where phonological categories are 
processed in a discontinuous fashion despite continuity in the phonetic domain. 
In studying the mechanisms that underlie categorical perception and other 
speech perception processes, researchers sometimes contrast the variability of 
speech with a postulated constancy of the listener’s perceptual behavior (Liber-
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man and Mattingly 1985; Stevens 2005). But, speech perception is far from con-
stant: it is both flexible and plastic. Under “flexibility”, we understand the rela-
tively short-term changes of the perceptual system that result from the immediate 
context such as the preceding or following sound (e.g., Repp and Liberman 1990). 
Under “plasticity”, we understand the relatively long-term changes such as in 
perceptual learning, where exposure to particular sounds produces changes that 
persist over time (Kraljic and Samuel 2005; Eisner and McQueen 2006). To permit 
the reliable perception of phonological categories amidst the inherent variability 
of speech, the perceptual system needs to be able to change its behavior in a prin-
cipled manner, and only under certain conditions. This is where the interplay of 
flexibility and plasticity is crucial.

Dynamical systems theory is ideal for understanding these time-varying pro-
cesses because it allows for the modeling of perception and learning as unfolding 
across multiple time scales. The perspective of dynamical systems has provided 
novel insights into numerous domains of human behavior, including movement 
coordination (e.g., Hock, Schöner, and Giese 2003), interpersonal coordination 
(e.g., Schmidt, Bienvenu, Fitzpatrick, and Amazeen 1998), learning (e.g., Zanone 
and Kelso 1992; Vallabha and McClelland 2007; Tuller, Jantzen, and Jirsa 2008), 
visual perception (e.g., Kawamoto and Anderson 1985) and speech perception 
(e.g., Grossberg and Myers 2000; Grossberg and Kazerounian 2011). With dynam-
ical systems theory comes a commitment to look at the continuous aspects of 
perceptual and cognitive phenomena rather than purely looking at stable catego-
ries and discrete changes (Spivey 2007). Moreover, the perspective of dynamical 
systems focuses on studying the interactions between different processes rather 
than processes in isolation (Thelen and Smith 2006).

In this paper, we propose a connectionist model of speech identification, the 
behavior of which can be understood in terms of dynamical systems theory (cf., 
e.g., Spivey 2007; McClelland and Vallabha 2009). We test our model experimen-
tally with a forced choice speech identification task, where listeners make percep-
tual decisions (such as, “Is this a /ba/ or /pa/?”) about phonetic items from an 
acoustic continuum. The response pattern is usually categorical, with listeners 
judging stimuli to be the same across a large variation along the continuum, but 
then abruptly providing a different response at a critical value of the acoustic 
parameter (e.g., Liberman, Harris, Hoffman, and Griffith 1957; Liberman, Cooper, 
Shankweiler, and Studdert-Kennedy 1967; Best, Morrongiello, and Robson 1981).

Most experiments using this design try to avoid order effects by presenting 
different stimuli from the continuum in a random fashion. In contrast to this 
practice, Tuller, Case, Ding, and Kelso (1994) presented stimuli in an ordered 
fashion, starting at one end of the continuum and proceeding through all steps to 
the other end. They observed two different response patterns: contrastive behav-
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Competition, learning, and habituation dynamics   223

ior and conservative behavior. With contrastive behavior, the perceptual switch 
from, say, /ba/ to /pa/, is anticipated, emphasizing the acoustic differences be-
tween the stimuli on the initial extreme of the continuum and the stimuli which 
follow (Repp 1980). With conservative behavior, participants stick to the choice 
they made for the preceding stimulus, thus protracting the perceptual switch.

Tuller et al. (1994) modeled their data analytically with a differential equa-
tion and proposed that the conservative behavior was due to a form of perceptual 
hysteresis (see also Case, Tuller, Ding, and Kelso 1995). Hysteresis is a typical phe-
nomenon observed in many dynamical systems: if a system produces one re-
sponse and this is also compatible with newly incoming input, the system tends 
to reproduce that response. The system changes its response only if the incoming 
input is incompatible with the last produced response. In both Tuller et al. (1994) 
and Case et al. (1995), the aim was to show the presence of contrastive and con-
servative behavior and to interpret it as evidence for the dynamical nature of 
speech perception. Their analytical model used differential equations to account 
for both types of behavior, but contrastive behavior was only reproduced with an 
ad-hoc solution.1

Moreover, both studies did not consider response times, a crucial measure 
that offers a window into the temporal characteristics of the processes that are 
involved in categorical speech perception. It is known that response times are 
slow with maximally ambiguous stimuli (Studdert-Kennedy, Liberman, and Ste-
vens 1963; Pisoni and Tash 1974; Repp 1981). Massaro and Cohen (1983) model 
this slowing down for speech identification experiments where stimuli are pre-
sented at random. But, what happens if the category switch is shifted in an  
ordered presentation because of conservative or contrastive behavior? This is  
one aspect of categorical speech perception that we model and subsequently test 
experimentally.

We adopt the hypothesis that during speech identification, abstract linguistic 
representations compete for activation (cf. Grossberg 1973; McClelland and Val-
labha 2009), and that this fast competition process is modulated by slower pro-
cesses such as learning and habituation. Thus, in the model that we are going to 
present, the processes underlying fast perceptual competition and slow learning 
and slow habituation constrain each other in real time. We chose to investigate 

1 In Tuller et al.’s (1994) model, the input to the dynamic equation which drives the behavior of 
the model depends both on the stimuli acoustics and on the position of the stimuli in the 
sequence. The function which combines these two factors can be trimmed in such a way that the 
effect of the acoustic difference between two consecutive stimuli is stronger in the second half of 
a sequence of stimuli. When this happens the perceptual switch is anticipated in the second half 
of the presentation and a more contrastive behavior is observed.
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the interplay between these different processes because they provide explana-
tions for the flexibility and plasticity of perception when studied in isolation 
(Kawamoto and Anderson 1985; Bogacz et al. 2006; Vallabha and McClelland 
2007). When these mechanisms are taken together, they not only predict response 
times during identification tasks, but also other, more long-term effects: as the 
model learns, its sensitivity to small acoustic differences is heightened, mirroring 
the way in which listeners’ perception of ambiguous, unfamiliar, or degraded 
speech sounds becomes gradually more reliable with experience (Maye, Aslin, 
and Tanenhaus 2008; Bradlow and Bent 2008; Winters and Pisoni 2008; Samuel 
and Kraljic 2009). And, as the model becomes more and more sensitive due to 
learning, it shifts from hysteresis to contrastive behavior (Tuller 2005; for a simi-
lar effect with audiovisual stimuli see Vroomen, van Linden, de Gelder, and Ber-
telson 2007).

In Section 2, we discuss the model in more detail. We discuss its architecture 
(Section 2.1) and the resulting dynamics (Section 2.2), as well as the model’s be-
havior in a specific speech identification task (Section 2.3). Section 3 describes a 
pilot experiment that provides a first test of our model and that disentangles the 
effects of perceptual learning from other long-term effects such as fatigue or bore-
dom. The main experiment (Section 4) then tests the full set of predictions that 
our model produces. Section 5 discusses the overall results, as well as some unex-
pected findings.

2 The model

2.1 Model architecture

Our model is composed of two layers (see Figure 1a). The input layer contains 21 
nodes that represent 21 stimuli on an acoustic continuum. When no stimulus is 
presented, all of these nodes have zero activation. A stimulus at a position i on the 
continuum is modeled by a bell-shaped bump of activity centered at position i in 
the input layer. This means that with every stimulus located at a position on the 
continuum corresponding to a particular node, there is always some activation of 
the surrounding nodes (see Figure 1b). In Figure 1b, the two stimuli indicated by 
the black and the grey activation patterns are almost overlapping, corresponding 
to a high degree of similarity between these two stimuli. The stimulus indicated 
by the white activation pattern on the right side of the continuum has no overlap 
with the other stimuli.
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Competition, learning, and habituation dynamics   225

The competition layer consists of only two nodes, one for each linguistic  
category in the forced choice identification task. Every node of the input layer is 
connected to both nodes of the competition layer. The incoming activation to the 
competition layer is multiplied by the weight of each connection. The activation 
of the two category nodes of the competition layer is a function of the sum of the 
weighted activations from the input layer. Before any stimuli are presented to the 
model, the weights are distributed so that towards each end of the continuum, 
input nodes tend to activate one category more than the other (see Figure 1c). This 
captures the observation that listeners, because of their linguistic background, 
already partition the acoustic continuum into two categories prior to the experi-
ment. Towards the middle of the continuum, the two category nodes receive an 
increasingly similar amount of activation, rendering stimuli in this region more 
ambiguous. The connection weights can thus be likened to a filter that amplifies 
or attenuates the signals coming from a specific region of the input layer.

Within the competition layer, each category node has recurrent connections 
to itself. This means that strong activation provides additional input, allowing 
the system to settle into stable perceptual states more quickly. The nodes also 
have inhibitory connections between each other. The higher the activation of a 
node, the stronger its inhibitory effect on the other node. This introduces a “win-

Fig. 1: (a) The architecture of the model with a simplified depiction of the input layer (I1, . . . , I21) 
and the two nodes of the competition layer ( y1 and y2) that correspond to the two phonological 
categories. Plus signs indicate excitatory connections, minus signs inhibitory connections. (b) 
Three example stimuli that are indicated by bell-shaped activation patterns. (c) The weights of 
the connections between the input layer and node y1 (white dots) and node y2 (black dots).
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ner takes all” dynamic, where after a short time in the competition process, only 
one node is strongly activated, and only one linguistic form at a time is perceived. 
This effectively leads to categorical speech perception, where acoustic/phonetic 
gradation along a continuum is not interpreted as phonological gradation.

2.2 Model dynamics

The activation levels within the input layer do not change during the presentation 
of a stimulus. The time-varying nature of the model emerges from the competition 
process, which in this model is governed by the competition equations intro-
duced by Grossberg (1973). The model architecture depicted in Figure 1a corre-
sponds to the schematic model formula in Equation 1. This equation is a simpli-
fied version of the actual model equation that is discussed in Appendix A (Eq. A1; 
see Grossberg [1973, 1976] for a detailed mathematical treatment).

 Δyj = (1 − yj)(inputj ⋅ zj + Fj) − yjGj − yj L (1)

Ideally the model changes in continuous time. However, our implementation 
proceeds in discrete time steps (1 step corresponds to 20 ms). Δyj is the amount of 
change in the activation of node yj observed at each time step. If this quantity is 
negative, the activation of yj decreases. If this quantity is positive, the activation 
increases. The right-hand side of this equation is composed of three additive 
terms. The first additive term represents the positive contributions to the activa-
tion of yj. Two kinds of positive signals reach the node: inputj represents the sum 
of the weighted signals from the input layer to yj. This is multiplied by the effi-
ciency variable zj. Low values for this variable weaken the effect of incoming sig-
nals. The efficiency variable itself is changing at a slower time scale (Eq. A3, Ap-
pendix A). This variable models the effects of habituation: if a node becomes 
continually activated, its efficiency variable lowers and incoming bottom-up sig-
nals become decreased. Fj represents the recurrent (auto-excitatory) signal sent 
from yj to itself (curved connections in Figure 1a). Fj is obtained by submitting the 
activation of node Fj to a sigmoid function. Finally, multiplying everything within 
this first additive term by (1 − yj) assures that the activation value of yj cannot  
exceed 1.

The second additive term (and the first negative contribution to the change in 
activation Δyj) is represented by Gj. This is a function of the activation of the com-
peting node, represented by the lateral connections between the nodes in Figure 
1a. This term implements the competition between the two nodes, where the acti-
vation of one node inhibits the activation of the other. Because Gj is multiplied by 
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Competition, learning, and habituation dynamics   227

the shunting term yj, the activation of a node has a lower limit of 0 (as yj ap-
proaches 0, Gj is multiplied by a smaller value and its effect decreases). The last 
additive term of this equation, yjL, represents the passive leakage of a node. It 
corresponds to a constant multiplied by the activation yj. When a stimulus is on 
and a positive bottom-up signal reaches the node, passive leakage limits the 
node’s peak activation. After stimulus offset, the leakage term overcomes the re-
current auto-excitatory input, and without any further contributions from the 
input layer, the activation of node yj will rapidly recede to 0 at stimulus offset. 
This decrease is contrasted by the self-sustaining signal traveling through the re-
current connections (Fj): since the self-sustaining signal is a function of the 
node’s activation yj, the higher the activation of a node at the stimulus offset, the 
slower its decay.

The behavior of the two competitive nodes during the presentation of a stim-
ulus can be represented either by the time-dependent activation values of the two 
nodes (Figure 2a) or by a trajectory on the two-dimensional state space of the 
system (Figure 2b). The activations in Figure 2a are initially set to 0. They start 
growing at stimulus onset and they start decaying back to 0 at stimulus offset. 
The activations of the two nodes at instant t define the state of the system at that 
instant and correspond to a point on the system’s state space (Figure 2b). The axes 
of the state space indicate the activation values of the two nodes. Therefore, the 
coordinates of the points on that plane correspond to pairs of activation values, 

Fig. 2: (a) Evolution over time of the activation of the two nodes. The shaded area indicates the 
time interval during which the stimulus is presented. (b) State space of the system. The state of 
the system at a given instant is represented by a point on this plane. The coordinates of this 
point represent the activation of node y1 and y2 respectively. Arrows indicate the direction of the 
system dependent on its current state; the circles represent the system’s attractors. Each 
attractor is associated with one possible percept. The thick line is called a separatrix. When the 
activations grow in Fig. 2a, the system follows the trajectory indicated by the thin line in Fig. 2b.
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and a trajectory through the state space corresponds to the evolution over time of 
the activations of the two nodes.

The arrows in Figure 2b represent the velocity vectors of the system and de-
pict the “pull” of the system towards certain patterns of activation. The system’s 
state changes according to the direction of the arrow located at the corresponding 
coordinates in the state space. The rate of change of the system state also depends 
on its position in the state space, and it is proportional to the length of the corre-
sponding arrow (i.e., the magnitude of the velocity vector). The orientation of the 
arrows is such that the system tends to be drawn to either one of system’s attrac-
tors. The separatrix (the thick line in Figure 2b) partitions the state space into two 
attractor basins where the system that initially has its state located on one side of 
the separatrix is pulled towards the attractor on the same side. When the system 
is close to one attractor, only the activation of one node is high enough to exceed 
a perceptual threshold and trigger the perception of the corresponding category. 
This property lets us associate each attractor with one of the two perceptual cate-
gories. Once the system’s state has settled into one of these attractors, it does not 
change any more unless the input changes.

Each stimulus on the continuum creates a different state space with a differ-
ent attractor layout (see Figure 3a). Each attractor layout defines the possible tra-

Fig. 3: (a) Different attractor landscapes with attractors (circles) and separatrices (lines) 
corresponding to five stimuli from the acoustic continuum. (b) Activation of one node when its 
most supporting stimulus (represented by grey rectangle) is presented repeatedly. Stimulus 
duration is 50 time steps (one step = 20 ms), during which the two nodes reach their peak 
activation values. The dashed line indicates the threshold for perception of the associated 
category. Note that the activation peaks of the winning node increase with repeated 
presentation of the same stimulus due to the fact that residual decay is slow.
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jectories that the system can follow, ultimately leading to one of the two attrac-
tors. The attractor layout is not only affected by the incoming stimulus, but also 
by the value of the efficiency variables for each node (z1 and z2) and by the state of 
the learning process that affects the connection weights. The configuration of the 
connection weights at the beginning of the simulation is such that near the ex-
tremes of the continuum (stimulus 1 or stimulus 21), there is only one attractor 
and thus only one percept possible. However, stimuli near the center of the con-
tinuum have two attractors.

Due to the presence of the passive leakage term in Equation 1, each node is 
subject to gradual decay at stimulus offset. This means that the activation slowly 
recedes towards zero once no input is present. A node that has won the competi-
tion process will recede back more slowly to 0 than a node that has lost the com-
petition process because its self-sustaining signal slows down the decay. If con-
secutive stimuli are presented with sufficiently small delay, the activation will not 
have fully receded back to 0. This residual activation is an additional input which 
biases the competition towards the results of the competition process from the 
preceding stimulus. Figure 3b shows the system’s response to the repeated pre-
sentation of the same stimulus, where the bias towards the winning node tends to 
increase due to recurrent connection to itself and due to the fact that activation 
does not completely decay until the next stimulus is presented. This pattern leads 
to hysteresis, where the model tends to stick to a response that has already won 
the competition process.

If an arbitrarily defined perceptual threshold is crossed, the identification of 
the associated category is triggered and learning is allowed to happen. After a 
node has won the competition process, those connections from the input layer 
that contributed to its winning are strengthened, gradually increasing the node’s 
sensitivity to specific regions of the input layer. Learning is thus simply a form of 
associative strengthening of the connection weights that depends on a combina-
tion of above-threshold activation of the category node and high activation of the 
input node. Such a learning law is compatible with Hebbian learning (a learning 
process where a synaptic connection between two nodes strengthens when both 
nodes are simultaneously active).

The third process that affects the behavior of the model is the habituation 
process. When a node becomes habituated, the signal coming from the incoming 
connections is reduced. The rate of change of habituation is slower than the rate 
of change of the competition process but faster than the rate of change of the 
learning process. Figure 4 illustrates the effects of habituation over time during 
the sequential presentation of 21 stimuli ordered as proposed by Tuller et al. 
(1994). Stimuli are presented sequentially from one extreme of the continuum to 
the other in the first half of the sequence, and then back again to the initial ex-
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treme in the second half. Figure 4a shows the activations of the two nodes. One 
node wins the competition at the beginning and at the end of the sequence, where 
the stimuli from one side of the continuum are presented; the other node wins the 
competition in the middle of the sequence, where stimuli from the other side of 
the continuum occur. Figure 4b tracks the development of the efficiency variables  
z1 and z2. When a node reaches high activation values, its efficiency variable de-
cays (Eq. A3, Appendix A). It gradually recovers back to 1 when the node has low 
activation values. However, the decay of the efficiency variable from 1 to 0 is much 
faster than the recovery. Thus, if a node wins the competition process over several 
consecutive stimuli (resulting in repeatedly high activation levels), the efficiency 
variable reaches very low levels and the node gets habituated. The efficiency vari-
able of a node is multiplied by the total input arriving at the node. Figure 4c 
shows the total input reaching the nodes at each stimulus with habituation;  

Fig. 4: Illustration of the habituation mechanism. (a) The activation levels of the two nodes with 
the habituation variable active. (b) The values of the efficiency variables of the two nodes over a 
sequence of stimuli. (c) The total amount of bottom-up input reaching the two nodes at each 
stimulus (differently colored bars represent input to different nodes). (d) Total input with 
habituation switched off by fixing the efficiency variable from Eq. 1 to the value 1.

(CS6) WDG (155×230mm) DGMetaScience   J-2736 LP 4:1  pp. 230–258 2736_4-1_09 (p. 230)
PMU:(YCP)2/3/2013 15 March 2013 2:35 PM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40



Competition, learning, and habituation dynamics   231

Figure 4d shows the total input prior to multiplication by the efficiency variable. 
In Figure 4d, moving from one extreme of the sequence towards the middle (i.e., 
from one side of the continuum to the other), the input arriving at one node in-
creases, while the input arriving at the other node decreases. This is due to the 
configuration of the connections’ weights. In Figure 4c, on the other hand, the 
values of the input signals are shaped by the efficiency variable. The reduction of 
the input signal with habituation means that, slowly, the alternative node is fa-
vored in the competition process.

In the model of speech categorization proposed by Tuller et al. (1994), the 
perceptual process is considered as a whole and nonlinearity is a macroscopic 
feature of speech identification necessary to obtain hysteresis. In our model, hys-
teresis results primarily from the recurrent auto-excitatory connections of a node 
to itself, and nonlinearities are present in the microscopic aspects of the model 
behavior in a number of different ways. First, activity coming from recurrent au-
to-excitatory and lateral inhibitory connections is transformed by a sigmoid func-
tion (Eq. A1, Appendix A). The sigmoid function (Eq. A2, Appendix A) reduces the 
effects of small activation values and boosts the effects of large activation values. 
Learning also depends on a sigmoid function of the activation values (Eq. A4, 
Appendix A), ensuring that learning is not over-sensitive to small activation  
values and that only high activation levels associated with the winning node  
trigger learning. The rate of change of the habituation process also depends on a 
sigmoid transformation of that node’s activation (cf. Eq. A3, Appendix A), assur-
ing that habituation acts only when high activation values are reached.

2.3 Task-specific behavior and predictions

Our model performed a binary forced choice task, where 21 stimuli from an acous-
tic continuum had to be identified either as the French word cèpe ([sɛp], a variety 
of mushroom), or as steppe ([stɛp], English steppe). Stimuli were presented se-
quentially in an increasing-decreasing order (henceforth, ID) or a decreasing- 
increasing order (DI). The increasing half of the ID sequence starts at the [sɛp] 
endpoint of the continuum and moves towards [stɛp]. The decreasing half moves 
back from [stɛp] to the starting point [sɛp]. Thus, a complete sequence contains 41 
stimuli in total (the stimulus occurring in the middle is not repeated). The  
decreasing-increasing sequence (DI) represents the opposite pattern (first half: 21 
to 1, second half: 1 to 21).

If the activation solely depended on the incoming input and static connec-
tion weights, a perceptual switch from one category to another would always oc-
cur at exactly the same point, regardless of whether the order was increasing or 
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decreasing. This pattern is labeled as “critical boundary” in Figure 5a. Hysteresis, 
on the other hand, is characterized by a perceptual switch farther away from the 
initial end point of the continuum in each half of the sequence (Figure 5b), indi-
cating that the system sticks to a response pattern. Switches closer to the initial 
end point in each half of the sequence represent contrastive behavior (Figure 5c). 
The amount of contrast or hysteresis can be quantified by measuring the differ-
ence between the position on the continuum of the switch point in the increasing 
half and of the switch point in the decreasing one, a measure which, following 
Nguyen et al. (2005), we call contrast-hysteresis index (CH index). If this index is 
negative, the model’s behavior can be characterized as contrastive; if the sign is 
positive, the behavior is conservative.

We ran the model on 5 increasing-decreasing (ID) and 5 decreasing- 
increasing (DI) sequences, as well as 10 sequences with random presentation  
order. ID and DI sequences were alternated, always interleaved with a random 
sequence (e.g., ID-random-DI-random-ID etc.). As the first stimulus of a sequence 
only contains the attractor for one category, the corresponding node wins the 
competition. It keeps winning the competition process so long as the attractor 
landscape for each stimulus contains the initial attractor. The vanishing of the 

Fig. 5: (a–c) Possible response patterns with ID order. The x-axis shows the position of a 
particular stimulus (indicated by tick marks); the y-axis shows a particular response choice. 
Arrows indicate the order of the responses. (d) CH index (continuous line with scale on left 
y-axis) and response times (dashed line with scale on right y-axis) for multiple sequences 
within a long experimental session. The horizontal axis represents the rank of each sequence in 
the experiment (e.g., “1” indicates the first ID or DI sequence). (e) Response times as a function 
of the distance from the perceptual switch point in the first half (continuous line) and in the 
second half (dashed line) of the sequences.
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attractor on which the system resides is called critical instability. Starting from 
this point on the acoustic continuum, the state space produced by stimuli shows 
only the attractor far from the one visited by the system in previous trials. The 
system is then forced to move to the new attractor and a categorical switch is  
observed (cf. Figure 3a).

Although the presence of critical instability adds an element of discreteness 
to the system’s behavior, the attractor landscape changes continuously across the 
stimulus continuum. Each attractor is characterized by a degree of relative stabil-
ity, corresponding to its attraction strength. This attraction strength translates 
into the velocity of movement of the system through the attractor landscape. The 
system moves faster when directed towards a more stable attractor, i.e., an attrac-
tor towards the end points of each continuum. Closer to the region of critical in-
stability near the perceptual switch, the system is slower. This behavior is also 
known as “critical slowing down” (e.g., Kelso, Scholz, and Schöner 1986). In Fig-
ure 5e, the continuous line represents the RTs2 before the perceptual switch in the 
first half and the dashed line represents the RTs after the perceptual switch in the 
second half of each ID or DI sequence. We can observe that near the perceptual 
switch, responses tend to be slowed in both halves of the sequence. However, RTs 
following the second switch are faster than RTs preceding the first switch. This 
can be explained as an effect of the habituation process: Before the second per-
ceptual switch, the competitor node has had high activation levels throughout a 
long sequence of stimuli (cf. Figure 4a), triggering the habituation mechanism. 
Then, once the second perceptual switch occurs, this node is not a good compet-
itor anymore because it is habituated. Before the first perceptual switch in the 
first half of the sequence, the alternative node has not been activated and is thus 
not habituated. This means that it exerts more inhibitory influence, with the con-
sequence that RTs are slower.

In Figure 5e we can also observe that RTs increase slightly for stimuli maxi-
mally distant from the perceptual switch. At the beginning of a sequence, the 
model is relatively slow to respond to the very first stimulus because a node can-
not benefit from residual activation. If the same node wins repeatedly, its residual 
activation and the increasing influence from auto-excitatory connections make 
the system respond faster. When, due to the effect of learning, the activation of 
the nodes are high enough to trigger the habituation mechanism and to anticipate 

2 In our simulations, we measure response times from the time point of stimulus onset to the 
time point when the activation of the winning node exceeds the perceptual threshold.
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the perceptual switch in the second half of a sequence, the winning node be-
comes habituated at the very end of the sequence, slowing down its response.3

Throughout the simulation, overall connection weights strengthen as a result 
of learning. This has various effects: (1) the increased connection weights pro-
duce stronger dynamics, resulting in higher activation peaks, faster response 
times, and more resistance to noise (see discussion of noise below); (2) an in-
crease in the average input arriving to the two nodes of the competition level pro-
duces a narrowing of the bistable region of the continuum (a relatively smaller 
number of stimuli produce a bistable attractor landscape), decreasing the value 
of the CH index (cf. Figure 5d); (3) the increased peak activation levels are strong 
enough to trigger the habituation process. This leads to a higher degree of con-
trastive behavior later in the experiment.

2.4 Internal noise

The behavior of the model described so far is completely deterministic. However, 
due to their inherent complexity, real systems (including the human perceptual 
system; cf. Haken 1983: 200–202) are characterized by internal noise. Such noise 
could randomly push the model away from its current position in the state space. 
We can model this by adding to Equation 1 a term that randomly takes values 
from a normal distribution at each time step, pushing the system away from its 
current position in the state space. If such a random term is added to the model, 
a response not only depends on the attractor landscape, but also on the degree of 
noise. If noise is strong and attractors are weak, the system can be randomly 
pushed from one attractor basin to another, which ultimately can result in a dif-
ferent response. Response changes due to noise are more generally instances of 
“critical fluctuations” (Kelso, Scholz, and Schöner 1986). These are expected to 
occur more frequently near the region of critical instability where the attractors 
are weaker and noise can have a larger effect. A strong attractor, on the other 
hand, is more resistant because noise is less likely to pull the system out of its 
attractor basin. Response changes due to critical fluctuations should be inter-
preted differently from response changes due to the critical instability itself (i.e., 
the vanishing of the attractor on which the system resides). Henceforth, we call 
the last response change in one half of a sequence a “perceptual switch” (which 

3 When the activation dynamics are strong enough to trigger habituation, nodes get habituated 
before each switch point. However the effect of habituation on response times before the switch 
points is confounded with the critical slowing down (due to increased competition) which 
precedes the switches.
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is due to critical instability), and we call a response change before the last re-
sponse change a “flip-flop”. We can predict that the frequency of flip-flops, being 
related to the relative stability of the attractors, increases as stimuli on the contin-
uum approach the perceptual switch (similar to the increase in RTs). And, we can 
predict that the flip-flops should become less frequent as overall experience with 
the stimuli and the task increases, due to the strengthened competition dynamics 
and to the reduction of the bistable region of the continuum.

The presence of noise can have a seemingly counterintuitive effect on mul-
tistable systems such as the model we propose here: an increase of internal noise 
can produce a decrease of the CH index. When a deterministic model is presented 
with stimuli from the bistable region of the acoustic continuum, no category 
switch is expected (the system switches only when leaving that region). However 
in the presence of noise, the system can jump out of the initial attractor basin.

Figure 6 shows trajectories for five stimuli that have bistable attractor land-
scapes. Proceeding through the stimuli from left to right, the strength of the initial 
attractor decreases while the strength of the alternative attractor increases. There-
fore the system is more and more likely to be pulled out from the initial attractor 
(which gets weaker) to the alternative attractor (which gets stronger). With a 
stronger noise component the perceptual switch is likely to occur earlier in the 
ambiguous region, and thus we expect a reduction of the CH index. Thus, the 
potential effect of noise is a source of ambiguity in the interpretation of the behav-
ior of the CH index: if a reduction of the CH index is observed after a prolonged 
exposure to stimuli, this may be either due to the deterministic component of our 
model (i.e., the effects of learning, increased competition dynamics, and in-
creased habituation), or it may be due to factors such as fatigue or boredom, 
which can increase internal noise and which are likely to increase in importance 
throughout a long experiment with human participants. Experiment 1 tries to dis-
entangle these two separate explanations of the reduction of the CH index.

Fig. 6: Noisy trajectories for five stimuli of the continuum where there are two attractors (the 
bistable region). Stimuli were presented to the model in the left-right order. The middle picture 
represents the most ambiguous stimulus.
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2.5  Ordinal nature of synthetic response patterns and  
pattern-oriented modeling

There are basically two approaches to comparing data obtained from simulations 
with empirical data: a quantitative and a qualitative, or ordinal, approach. With 
the quantitative approach, a model is evaluated by its goodness of fit to the data. 
With the ordinal approach, a model is evaluated through hypothesis testing on 
empirical data (Pitt, Kim, Navarro, and Myung 2006; Smolensky and Legendre 
2006). Hypotheses correspond to predictions about the effect of the experimental 
conditions on the ordering of the data along some behavioral dimension (in our 
case values of the CH index and RTs). An ordinal approach is fruitful when, as in 
our case, the focus is on the general principles governing the modeled behavior. 
Adopting such an approach in the comparison of our model’s behavior with em-
pirical data means to test the following hypotheses: (1) the CH index, the RTs, and 
the amount of flip-flops decrease throughout the task; (2) the RTs and the fre-
quency of flip-flops increase as consecutive stimuli approach the perceptual 
switch; and (3) responses are slower before the perceptual switch in the first half 
of a sequence than after the perceptual switch in the second half. If the ordinal 
relations listed here are inversed in the empirical data, our model should be con-
sidered inadequate. Note, moreover, that our validation approach complies with 
the principles of pattern-oriented modeling (Grimm et al. 2005), where it is con-
sidered insufficient if a model produces a single response pattern but instead, a 
model should be able to account for multiple response patterns.

To assess our model’s predictions, we followed two directions. Because of the 
ambiguity of interpreting the CH index in noisy systems mentioned above (see 
Section 2.4), Experiment 1 was designed to provide evidence for a true effect of 
learning and to minimize the potential effects of noise due to fatigue or boredom. 
Also, this experiment serves to replicate Tuller et al.’s (1994) experiment with dif-
ferent stimuli, a different population (French speakers), and a different language 
(French). In Experiment 2, we looked at the effects of learning on the CH index 
and response times over the course of a long experiment, testing the full extent of 
our model’s predictions.

3 Experiment 1
With Experiment 1, we tested the idea that the decrease of the CH index is in fact 
due to learning and not due to such factors as fatigue or boredom. To this end, we 
tested two populations with different levels of experience with the task. If the 
most experienced listeners show lower CH values, it is reasonable to assume that 
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this measure depends on listeners’ experience and thus on learning. In this cir-
cumstance, it would indeed be hard to interpret the lowering of the CH index as 
due to the effect of random noise, especially if the experienced participants have 
less variable response patterns.

3.1 Participants

Six experienced phoneticians and six academics from the humanities volun-
teered to participate in the experiment (both groups come from the Université de 
Provence, France). There were 4 male and 8 female participants, equally distrib-
uted across the two groups (mean age: 32). Phoneticians can be considered expert 
listeners, and the other group can be considered naïve listeners.

3.2 Stimuli

Stimuli form an acoustic continuum ranging from [sɛp] to [stɛp]. The two words 
differ only in the closure duration that follows the fricative [s]. A long closure 
duration indicates the presence of the stop in steppe; the absence of a closure 
duration indicates the absence of a stop in cèpe. We constructed a stimulus mid-
way between [sɛp] to [stɛp] and systematically varied the closure duration in 4 ms 
steps from 0 to 56 ms, resulting in a 15-step continuum. The stimuli construction 
is detailed in Appendix B, Section 1.

3.3 Procedure

The experiment was preceded by a training session, where participants listened 
five times to the endpoint of the continuum with simultaneous orthographic pre-
sentation of the respective word. In the main experiment, as in our simulations 
outlined in Section 2.3, stimuli were presented sequentially in 5 ID, 5 DI, or 10 
ran dom sequences (20 sequences total). ID and DI sequences were randomly al-
ternated but each ordered sequence was always preceded by a random sequence 
(e.g., ID-random-DI-random-DI etc.). This prevented participants from basing  
the perceptual switch on counts of the stimuli. Each sequence pair (random-DI or 
random-ID) was followed by a pause of 6 seconds. Within each sequence, the  
inter-stimulus-interval was set to 2 seconds. There was a 5-minute break in the 
middle of the experiment. Including pauses, the experiment lasted approximately 
30 minutes.
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3.4 Results

Figure 7a and Figure 7b depict the sigmoidal identification curves for the two 
groups. Each curve was obtained by averaging across all responses (pooled across 
speakers and presentation orders). The curves are very similar for random versus 
ordered presentation of the stimuli, and they look similar to what has been found 
in previous studies on categorical perception (e.g., Pisoni and Tash 1974). How-
ever, the curves are not symmetrical around the middle value but shifted towards 
steppe, suggesting that the continuum was modeled in a non-optimal way.

Figure 7c and Figure 7d depict the relative frequencies of the three different 
response patterns. Hysteresis was by far the most frequent pattern (average CH 
index: 3.02), but it was distributed differently across phoneticians and naïve  
listeners: whereas the CH index was 1.3 for phoneticians, it was 4.75 for naïve lis-

Fig. 7: Top row: Proportion of cèpe responses for phoneticians and naïve listeners over the 
closure duration continuum. Solid lines are responses in ordered sequences; dotted lines are 
responses in random sequences. Bottom row: Percentage of response pattern showing 
hysteresis (H), enhanced contrasts (EC), and critical boundary (CB) in ordered sequences for 
phoneticians and naïve listeners. White bars are for ID sequences, gray bars for DI sequences.
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teners, indicating that the latter group exhibited more hysteresis and less con-
trastive behavior. The reliability of this difference was tested using a generalized 
linear mixed model with Gaussian error distribution and identity link function.4 
The model included Group as a between-participants fixed effect and random in-
tercepts for participants. Group had a significant effect on the CH index (p = 0.011), 
with experts having a CH index that was smaller by about 3.45±1.17 (standard 
error).

3.5 Discussion

While our participants exhibited both contrastive behavior and hysteresis, the 
latter response pattern was the most frequent. Moreover, experienced listeners 
exhibited less hysteresis and more contrastive behavior. This suggests that con-
trast and hysteresis are not solely due to random noise affecting the identification 
process around the perceptual boundary, but that the occurrence of these pat-
terns is affected by experience with the stimuli and the task. This reasoning is 
based on the assumption that participants from both groups are similarly affected 
by fatigue or boredom. This may not be true and indeed our data suggest that, as 
expected, phoneticians show an overall less variable behavior (the ambiguous 
region of the continuum is reduced for these listeners, corresponding to a lower 
absolute value for the CH index). This may be interpreted as evidence that phone-
ticians were more attentive and less subject to fatigue or boredom. If the reduc-
tion of the CH index was solely due to noise, this higher degree of attention should 
translate into a higher CH index for phoneticians – contrary to what we observed. 
We are thus confident in viewing the CH index in speech identification experi-
ments as an actual reflection of learning and competition dynamics.

While Experiment 1 looked at the effects of learning in a between- 
participants design, our main Experiment 2 investigated the within-participants 
development of the CH index over the course of a long experiment. This tests the 
results from our model more directly.

4 We used R (R Development Core Team 2005) and the lme4 package (Bates, Maechler, and 
Bolker 2012). Plots of residuals against fitted values revealed no obvious deviations from 
normality or homogeneity. P-values were computed with MCMC sampling implemented in the 
package languageR (Baayen 2011). Unless otherwise noted, this applies to all models with 
Gaussian error distributions throughout the paper.
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4 Experiment 2
Experiment 2 was conducted to observe changes in the perception of phonologi-
cal categories at several timescales in greater detail. We tracked the CH index and 
response times, as well as the development of these dependent measures over the 
course of a long experiment. Based on our model, we expect critical slowing 
down around the perceptual switch. Also, since internal noise has a stronger ef-
fect when perceptual attractors are weak, we expect to observe more flip-flops 
near the perceptual switch in the region of critical instability. On a longer time 
scale, we expect participants to get faster overall, and to exhibit a development 
towards more contrastive behavior (lower CH values) as exposure to the stimuli 
and the task increases.

4.1 Participants

We tested 14 participants (5 male, 9 female; mean age: 28). Three participants 
were excluded from the analyses because of fatigue (we explicitly asked partici-
pants to stop in case they found the task harder and harder as the experiment 
proceeded). Data from one additional participant was excluded from the RT anal-
ysis because of technical failure.

4.2 Stimuli

Because of the asymmetry of the identification curves in Experiment 1, we used a 
different method to construct the stimuli in Experiment 2 (see Appendix B, Sec-
tion 2 for details). The crucial difference was that we used two continua: one 
based on the vowel of [sɛp], the other one based on [stɛp] (we call this factor 
“vowel type”). Each of the two continua was composed of 21 stimuli, with the 
closure duration between the fricative and the vowel ranging from 0 to 100 ms in 
steps of 5 ms.

4.3 Procedure

For each vowel of the two types, we tested 5 ID sequences, 5 DI sequences, and 10 
random sequences (40 sequences total). The experiment started with an ordered 
sequence, which we considered a training sequence. We balanced the initial  
order (ID or DI) and the vowel type of the initial sequence across participants. 
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Each ordered sequence (with the exception of the very first one) was preceded by 
a random sequence and was followed by a 6-second pause. The ordering of the 
sequences was the same as in Experiment 1 and our simulations (ID-random-DI, 
etc.). There was a 5-minute pause midway through the experiment, resulting in an 
experiment that was approximately one hour long.

4.4 Results

Figure 8a shows the identification curves separated with respect to the vowel 
type. Although the new method of stimulus construction made the curves more 
symmetrical, the trading relation between the closure duration and the vowel 
goes in the opposite direction from what would be expected: for a given closure 
duration, the stimuli which contained the vowel modeled on [sɛp] were identified 
more often as [stɛp]. This result was unexpected.

Another unexpected result was that the identification curves were different 
for participants starting the experiment with an ID sequence and for participants 
starting the experiment with a DI sequence, shown in Figure 8b. Participants who 
started with the ID sequence (whose initial stimulus was [sɛp]) tended to have an 
identification curve with a higher proportion of [stɛp] responses. This surprising 
result will be further discussed in Section 4.5.

To statistically validate our observations, we performed a series of general-
ized linear mixed models with binomial error structure and logit link function  
(= mixed logistic regression) with the dependent variable response category 

Fig. 8: Percentages of cèpe responses over the closure duration continua. (a) Curves for 
stimulus type, averaged over presentation orders. (b) Curves for participants who started with 
increasing-decreasing (ID) or decreasing-increasing (DI) sequences as the very first order.
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([sɛp] vs. [stɛp]).5 Closure duration produced a significant effect for ordered  
(p < 0.0001, |Z| = 9.54) and for random sequences (p < 0.0001, |Z| = 11.14). The 
probability of a [sɛp] response decreased with longer closure duration by 0.99 
from one extreme to the other of the continuum both in ordered sequences (log 
odds ratio dropped by 3.21±0.41 for each increase in closure duration), and in 
random sequences (log odds ratio −3.14±0.28). Vowel type had a significant effect 
for random (p < 0.0001, |Z| = 4.82) and ordered sequences (p < 0.0001, |Z| = 8.42) 
as well: the probability of a [sɛp] response increased with vowels coming from 
[stɛp], by about 0.165 (log odds ratio = 0.71±0.2) for ordered and by 0.2 (log odds 
ration = 0.87±0.18) for random sequences.

In ordered sequences there was a significant interaction between the effect of 
closure duration and sequence number (p < 0.0001, |Z| = 7.37), indicating that the 
slope of the identification function became steeper with increasing exposure to 
the stimuli. The initial sequence type (ID vs. DI) had a significant effect in both 
ordered (p = 0.045, |Z| = 2.00) and random sequences (p < 0.01, |Z| = 2.65). The  
order of presentation of the very first ordered sequence leads to a horizontal shift 
of the identification curves. Participants who started the experiment with an ID 
sequence were indeed less likely to perceive cèpe in ordered sequences by about 
0.21 (log odds ratio = −0.88±0.44) and by about 0.22 in random sequences (log 
odds ratio = −0.94±0.356).

To analyze flip-flops, the answers corresponding to the two different words 
were considered separately. In the first half of an ID sequence, we considered the 
[sɛp] responses before the perceptual switch observed in that half as an instance 
of a flip-flop; in the second half of an ID sequence, we considered the [stɛp] re-
sponses before the second perceptual switch as a flip-flop. The exact opposite 

5 The model had the following fixed effects: closure duration, vowel type, sequence position in 
the experiment (“sequence number”, 1, 2, 3, etc.), initial presentation order (ID vs. DI), and initial 
presentation vowel. We also included the following interactions: closure duration*sequence 
number, initial presentation order*sequence number and initial vowel type*sequence number. 
The latter interaction did not become significant and was subsequently excluded from the model. 
We included a random effect term for participants (random intercept) and participant-specific 
random slopes for the distance to the switch point, for vowel type, and for sequence number. As 
a general procedure for this and the following mixed models, we initially added a partici-
pant-specific random slope for each fixed effect and then removed those which did not produce 
a significant decrease of the model’s residuals (as assessed through likelihood ratio tests). We 
analyzed the data obtained within random sequences and data obtained within ID and DI 
sequences separately with different models of the same structure. Continuous predictors were 
centered to a mean of 0 (corresponding to the average of the continuous predictor). Unless 
otherwise noted, this applies to the continuous predictors of all subsequent models.
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was done for DI sequences. In Figure 9a, the proportion of flip-flops is plotted as 
a function of the distance of the stimulus to the switch point.

We performed mixed logistic regression on flip-flops with the fixed effects 
“distance to the switch point” and “sequence number”, as well as the interaction 
between these two factors. The effect of the distance from the switch point was 
significant (p < 0.0001, |Z| = 4.07), as well as the effect of sequence number (p < 
0.0001, |Z| = 4.19) and their interaction (p < 0.0001, |Z| = 3.60). The proportion of 
flip-flops decreased from 0.064 for the stimuli positions closest to the switch 
point to 0.003 for the most distant stimuli (log odds ratio per step on the contin-
uum: −0.17±0.04). The flip-flop proportion decreased by 0.032 after 20 ordered 
sequences of stimuli (log odds ratio per sequence: −0.06±0.01).

Figure 9b shows the average response times against the distance from the 
switch point. The very first and last stimuli of each sequence are not considered 
here because, as noted in Section 2.3, these stimuli are expected to produce 

Fig. 9: (a) Average proportions of flip-flops as a function of the distance from the switch point. 
(b) Average response times and standard deviations against distance from the switch point. 
Empty circles and dashed vertical bars: averages and standard deviations in the first halves of 
the sequences. Filled circles and continuous bars: averages and standard deviations in the 
second halves of the sequences. (c) Average value of the CH index and standard deviations with 
respect to the position of the sequence in the experiment (sequence number).
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slower response times. For the purpose of statistical analyses, we discarded re-
sponse times shorter than 250 ms (cf. Jensen 2006). This resulted in 36 omitted 
data points (1.25%). To avoid deformation of the response time distribution, no 
ceiling was put on the data (cf. Ulrich and Miller 1994). We used the logarithm of 
response times as the dependent variable and the distance of the stimulus from 
the switch point, the half of the sequence (first vs. second), and the sequence 
number as fixed effects. We included participant as a random effect (random in-
tercept), as well as participant-specific random slopes for the distance to the 
switch point and for sequence number. p-values were estimated using MCMC 
sampling.

Distance to the category switch had a significant effect on response times (p < 
0.01), which at the most distant stimuli from the category switch were about 171 
ms faster than at the closest stimuli (log difference between consecutive stimuli: 
1.01±1.003). Sequence half had a significant effect as well (p < 0.0001), with RTs 
being 80 ms faster in the second half than in the first half (log difference between 
the two halves: 1.06±0.04). Sequence number also had a significant effect (p < 
0.0001): Participants were on average 139 ms faster at the end of the experiment 
(log difference between one sequence and the next: 0.009±0.002). 

Figure 9c shows the development of the average CH value with respect to the 
sequence number, highlighting that there was a downward trend throughout the 
hour-long experiment. A Gaussian linear mixed effects model was run with CH as 
continuous dependent variable and sequence number as a fixed effect. We in-
cluded random intercepts for participants (quantifying individual baseline differ-
ences in the CH index), as well as random slopes (quantifying individual differ-
ences in how sequence number affects the CH index). The position of the sequence 
had a significant influence on the CH index (p = 0.0017), decreasing it by about 
0.15±0.05 each sequence.

4.5 Experiment 2: Discussion

The analyses of response times and flip-flops confirmed that our data exhibited 
critical fluctuations and critical slowing down: participants responded more 
slowly and exhibited more flip-flops around their respective perceptual switch 
points. Overall, response times, the frequency of flip-flops, and the CH index de-
creased throughout the experiment. These results confirm the predictions made 
by our model. These results also refute the notion that the CH index in this exper-
iment decreased purely because of increasing noise throughout the experiment: 
A decrease of the CH index due to noise should be paralleled by an increase of 
flip-flops, yet, the opposite was found.
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There were also two unexpected findings. The first concerns the effect of the 
vowel type. When participants heard stimuli modeled from productions of steppe 
they were more likely to perceive cèpe. Although this unexpected effect is orthog-
onal to our hypothesis, a possible explanation is suggested by looking at the de-
tails of the stimuli of Experiment 2: the vowel for cèpe had a steeper rise in inten-
sity at its onset compared to the vowel for steppe. The presence of a plosive 
between a fricative and a vowel usually involves an amplitude burst, correspond-
ing to the plosive release. This sudden increase in intensity may have been inter-
preted as a cue for the presence of a plosive. Also, we did not expect the initial 
presentation order to have a significant effect on identification curves throughout 
the experiment. In the following section we explore this novel result.

4.5.1 The role of initial presentation order

At the end of the experiment, participants were more likely to identify a stimulus 
as an instance of the category they perceived at the middle of the very first se-
quence of stimuli. For example, participants who started the experiment with an 
ID sequence (going from [sɛp] to [stɛp] and back), were more likely to identify 
ambiguous stimuli as instances of the steppe category at the end of the experi-
ment.

We explored this unexpected result with a post-hoc simulation. We could do 
this thanks to two features of our model. First, the presence of residual activation 
biases the competition in favor of the node that won recently. Second, stimuli at 
nearby positions on the continuum are represented by overlapping bell-shaped 
activation patterns in the input layer (cf. Figure 1b). Therefore, when a node 
learns to respond to a stimulus, learning strengthens its response not only to the 
present stimulus, but also to nearby stimuli. How precisely do these two aspects 
of our model lead to the observed first sequence effect?

Figure 10a shows the activation level of the two nodes during the very first 
ordered sequence within the simulation (in this case, ID order, starting with 
[sɛp]). A basic feature of the task employed is that in each sequence, the contin-
uum is presented twice, with the stimuli presentation order reversed from one 
half to the other. Therefore the beginning and end of the ID sequence are most 
supportive for the [sɛp] node and the middle of the sequence is most supportive 
for the [stɛp] node. During the presentation of this first sequence of stimuli, the 
overall input to the two nodes is weak because learning has not begun. As a con-
sequence, the activation peaks reached by the two nodes are too small to trigger 
the learning process when one node wins the competition. However, once the 
node associated with [stɛp] comes to win the competition near the middle of the 
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sequence (where its most supporting stimuli are located), it has already won the 
competition several times in a row and, as a result of the additional contribution 
coming from residual activation, can reach higher peaks and trigger the learning 
mechanism. When the [stɛp] node triggers learning in response to the presenta-
tion of stimulus i, it also changes its connection weights with respect to stimulus 
i+1, i+2, etc., and i−1, i−2, etc. This happens because learning causes an increase 
of the connection weights that are active when a stimulus i is presented. Thus, 
due to the bell-shaped activation pattern, the surrounding connection weights 
can benefit from learning as well. And, when stimulus i+1 is presented, it can 
benefit from learning triggered by the preceding stimulus at position i, triggering 
learning yet again. This way, learning can spread across the acoustic continuum 
to nearby regions.

The effects of this mutual reinforcement between activation and learning can 
be observed in Figure 10b, which depicts the total amount of input that reaches 
the two nodes at the onset of each stimulus. The figure shows how the effect of 
learning spreads gradually from the [stɛp] extreme of the continuum (presented 

Fig. 10: Activation of the nodes and total input in the first sequence of the simulation with an ID 
order. (a) y-axis represents the activation of the two nodes (dashed line: [sɛp] node; continuous 
line: [stɛp] node). x-axis represents position in the sequence (bottom axis) and on the acoustic 
continuum (top axis). The vertical bold line indicates the middle of the sequence. (b) Bars 
represent the total external input reaching each of the two nodes at each stimulus location 
(white bars: input to the [sɛp] node; black bars: input to [stɛp]).
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in the middle of the sequence) to the initially ambiguous stimuli (presented in the 
middle of the second half of the sequence).

The resulting bias is not reversed in the following sequences because, due to 
the accumulated learning, each stimulus produces an input signal strong enough 
to trigger learning, regardless of the position of the stimulus on the continuum. 
These initial differences change the system in a way that persists throughout the 
experiment. This is another hallmark of complex dynamical systems: they are 
sensitive to initial conditions (see, e.g., Kelso 1995).

5 General discussion
The results from our experiments strongly support a dynamical account of speech 
perception and the processing of phonological categories. We observed crucial 
phenomena that are consistently reported in the dynamical literature, such as 
hysteresis, critical slowing down, critical fluctuations, and sensitivity to initial 
conditions. Such phenomena support the hypothesis that nonlinear dynamics 
regulate the perception of phonological elements. For speech identification tasks, 
this idea was first explicitly tested by Tuller and her colleagues (1994), who  
modeled the perceptual system as an inseparable whole governed by a simple 
differential equation. These authors showed how the inherent complexity of the 
perceptual processes is reduced in the accomplishment of the identification task. 
In the present paper, we extended this model, showing how the patterns investi-
gated by Tuller et al. (1994) emerge out of the nonlinear interactions of different 
components of the speech perception system. Our model shows how the short-
term flexibility and long-term plasticity exhibited in speech identification experi-
ments are regulated by the interaction of known processes (perceptual competi-
tion, habituation and learning). As our model focuses on the interactions between 
different processes rather than on individual processes themselves, it can be 
characterized as an interaction-dominant system rather than a component- 
dominant system (see Ihlen and Vereijken 2010).

Our model is also “consilient” in the sense of Thagard (1978) and Wilson 
(1999), in that it explains different classes of facts: it is able to account for slower 
response times and increased proportion of flip-flops around the perceptual 
boundary, the shift of this perceptual boundary, as well as the slow shift from 
conservative to contrastive behavior throughout a long experiment. Moreover, it 
is able to account for some unexpected findings, namely that the very initial pre-
sentation order has long-term effects that persist throughout the whole experi-
ment. The fact that multiple response patterns that are observed with human 
participants can be explained with a simple unified model also shows that our 
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model meets the basic requirements of pattern-oriented modeling (Grimm et al. 
2005), thus assuring a high degree of generalizability.

Although the model proposed here is more detailed than a macroscopic 
model, as proposed by Tuller et al (1994), its architecture is still much simpler 
than the architectures of many other models of speech perception based on per-
ceptual competition (e.g., McClelland and Elman 1986; or the family of ART net-
works summarized by Grossberg 1978). We adopted such a simplified model in 
order to focus on the general principles governing the perceptual behaviors and 
on their interactions. Due to the generality of the processes regulating the behav-
ior of the model, it is tempting to extend its explanatory power beyond the task 
discussed in this paper. For example, it can be shown that the model proposed, 
due to its habituation component, can reproduce the results of selective adapta-
tion experiments (Eimas and Corbit 1973). In these experiments, a sequence of 
adapter stimuli which unambiguously support a particular percept habituate that 
category and lead to more responses to the alternative category. Vroomen, van 
Linden, de Gelder, and Bertelson (2007) show a shift from conservative to con-
trastive behavior in selective adaptation paradigms (based on data from Samuel 
2001), similar to the shift observed in our experiment and in our model. Such re-
sults fall straightforwardly out of our model, where weak competition dynamics 
produce conservative behavior, and where more contrastive behavior arises when 
perceptual dynamics are strengthened due to learning, triggering habituation.

The unexpected result of the initial presentation order bias might also shed 
light on some results by Tuller, Jantzen, and Jirsa (2008), as well as by Vallabha 
and McClelland (2007). These researchers explicitly looked at the dependence of 
learning on the initial configuration of the perceptual space at the beginning of 
the experiment. However, the initial perceptual behavior was not explicitly ma-
nipulated but rather controlled post-hoc by correlating the outcomes of the learn-
ing process with the initial listeners’ perception of unfamiliar sounds. The results 
presented in the current paper constitute more compelling evidence for a causal 
relation between the initial perception of unfamiliar sounds and the outcomes of 
the learning process, showcasing the known sensitivity to initial conditions of 
dynamical systems. Moreover, we can account for this causal relation with our 
model (Section 4.5.1). The sensitivity to initial conditions emerges from the inter-
action of bell-shaped activation patterns that come from the stimuli, and from 
residual activation and learning of the model. However, as this result was un-
expected, and as our experiment was not designed to explicitly test this hypothe-
sis, the finding needs to be verified with additional experiments.
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6 Conclusions
Differences in the temporal evolution of speech perception, learning, and habitu-
ation lead us to conceive their underlying processes as distinct. However in our 
model, these processes interact with each other and constrain each other. We 
thus consider perceptual competition, learning, and habituation in a unified 
framework, in line with viewing language and cognition as interaction-dominant 
systems. In this way, causal relations among processes occurring on different 
time scales can be accounted for by modeling.

We showed that the interaction among perception, learning, and habituation 
gives rise to different phases of behavior. In a first phase, perceptual dynamics are 
characterized by bistability on a wide region of the continuum, where the attrac-
tors for the two perceptual categories are relatively weak. Perceptual learning 
then strengthens the system’s attractors, resulting in more stable and faster per-
formances due to a reduction of the bistable region of the continuum. In its early 
phase, the learning process heavily depends on contextual factors, and changing 
the stimulus presentation order can affect the direction of learning, as shown by 
the initial presentation order bias. As learning proceeds, responses first become 
less dependent on their context, and then context dependency starts to increase 
again, this time with a contrastive nature.

This pattern shows how the perception of phonological elements changes in 
a principled manner. At the beginning, behavior is rapidly stabilized, and there is 
a tendency to respond in the same way despite variations in stimuli acoustics  
(= hysteresis). In the long run, perseverance to particular responses potentially 
loses its utility because it creates the conditions for the system to get stuck in the 
behavior already produced. But before this happens, a new form of flexibility 
arises (= contrastive behavior), and this helps the system to respond to small dif-
ferences in stimuli (= increased perceptual sensitivity). This highlights how 
speech perception is adaptive at multiple time-scales, assuring a high degree of 
robustness (cf. Winter and Christiansen 2012). The system is characterized by 
flexibility due to rapid perceptual competition. But, due to initial perseverance, 
this flexibility does not lead to instability. Larger changes that lead to different 
regimes of response patterns happen more slowly. This plasticity allows speech 
perception to cope on a long-term basis with the massive amount of variation that 
characterizes the way in which phonological systems are reflected in everyday 
vocal communication.
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Appendix A

1 Model equations

The equation which governs the activity of the two nodes was introduced by 
Grossberg (1973). It is given by:

_yj =ψ1 −αyj + (1 − yj) βf (yj) +
Xn

i= 1

wi, j Ii zj

" #
− yj c

X

l≠ j

f (yj)

" #( )
 (A1)
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yj is the activity of a node, and ẏj the time derivative of that activity. When ẏj is 
positive, the activity yj increases with a rate equal to ẏj. When ẏj is negative, yj de-
creases. ψ1 is a rate coefficient regulating the global rate of the competition pro-
cess (equal for both nodes). The dynamics of the nodes are defined by the three 
additive terms inside the curly brackets. The first additive term (−αyj) represents 
passive leakage.

The second additive term is the total positive input arriving to the node. This 
input is multiplied by a “shunting term” (1 − yj) to keep yj lower than 1. The total 
positive input itself is given by the sum of two terms. The first term is the activa-
tion value yj transformed by the nonlinear sigmoid function f (described below) 
and multiplied by a free parameter (β). This term determines the influence of the 
recurrent signal on the activation. The term ∑n

i=1wi, j Ii is the sum of the weighted 
activations coming from the input layer. Ii is the ith element of the input layer, and 
wi, j is the weight of the connection from Ii to yj. The effect of the external input on 
a given node yj is modulated by the value of the efficiency variable zj, which itself 
is changing dependent on the system state (see description below).

The third and final additive term in the equation (c∑l≠j f (yl)) represents the 
inhibitory signal from the competitor node. Here, the signal strength depends on 
a sigmoidized value of the activation of the competitor node multiplied by the 
free parameter c which determines the influence of the incoming inhibitory sig-
nals onto the activation dynamics. The whole third additive term is multiplied by 
the value of yj, which here has a shunting function constraining yj to positive  
values.

The sigmoid function f is given by

f (y) =
1

1 + e−ρ(10y − σ) (A2)

where the parameters ρ and σ determine the slope and the horizontal shift of f. 
The other source of nonlinearity in the main Equation (A1) is represented by the 
shunting terms (1 − yj) and yj. The choice of competition dynamics bounded by 
shunting terms was motivated by the normalization properties of these equations 
(cf. Grossberg 1973). Since the total activity over the nodes does not depend on the 
number of nodes, our model can in principle be extended, e.g., to incorporate 
multiple responses.

The efficiency variable zj varies between 0 (= yj is not affected by habituation 
at all) and 1 (= yj is completely habituated and its activation cannot grow even in 
the presence of a positive input).

_zj =ψ2[−μf (yj) + ε] (A3)
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φ2 regulates the overall rate of the habituation process, μ determines the rate 
at which the efficiency variable decreases when yj is active, and ε regulates the 
rate at which the efficiency variable zj recovers when yj is inactive. The habitua-
tion process is driven by the sigmoid function f of the value of yj.

The following learning law regulates the weights of the connections between 
the component Ii of the input layer and the node yj:

_wi, j ¼ ψ3 φ−
Xm

k = 1

wi, k

 !
f (yj)Ii

" #
 (A4)

This equation states that the speed of change of wi, j depends on the product 
f(yj)Ii. When the activation yj is small, this activation is minimized by the sigmoid 
function f, resulting in a negligible product (= no learning). When yj reaches high 
values, f outputs high values and learning occurs. ψ3 regulates the overall learn-
ing rate, m = 2 is the number of the competing nodes, and the term (φ − ∑m

k=1wi,k) 
defines an upper threshold (equal to φ) to the total amount of the weights on the 
connections starting from the ith component of the input layer. The presence of 
this threshold implements in the simplest possible way the idea that learning re-
sources are limited (Carpenter and Grossberg 1987).

2 Stimuli

When a stimulus located at position ω on the continuum is presented to the sys-
tem, the activation of the ith element of the input layer is given by:

I(i,ω) = e
− (ω− i2 )

ν ; i 2 {1… n} (A5)

Here, n is the number of the components of the input layer I, and ν = 4 is a 
constant determining the narrowing and the height of the activation bump. In 
order to keep the norm of the input vector constant across the stimuli of the con-
tinuum, each component of the input vector is divided by ∑21

ω=1 I(i, ω).
The duration of the stimuli, the ISI, and the duration of the silent interval 

between a sequence and the following one were matched to the values adopted in 
the second experiment of this paper. A single time step (one iteration of the equa-
tion) corresponds to 20 ms.
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3 Parameter settings

All simulations are based on the same set of parameters: ψ1 = 0.036, α = 0.95, β = 
0.25, c = 2.5, ψ2 = 0.01, μ = 0.14, ε = 0.03, ψ3 = 0.01, ϕ = 15. The two parameters of 
the sigmoid function f (Equation A2) are set to ρ = 7 and σ = 1.8 for Equation A1, to 
ρ = 7.5 and σ = 8 for Equation (A3), and to ρ = 11 and σ = 5.2 for Equation A4.

Appendix B Construction of stimuli
1 Stimuli for Experiment 1

We recorded five productions of [sɛp] and five productions of [stɛp] from a native 
speaker of French in a soundproof booth. We measured a number of acoustic vari-
ables and chose the most prototypical token of each category by looking at the 
distance for each measured variable from the median of all five productions. We 
considered the durations of the fricative, the coronal closure, the bilabial closure, 
and the vowel, as well as the ratios between the intensity peak of each consonant6 
and the intensity peak of the vowel. The acoustic material for building the conso-
nantal part of the stimuli was extracted from the selected [sɛp] token. This signal 
was then modified so that the value of each relevant acoustic parameter corre-
sponded to the average of the median value of [stɛp] and the median value of 
[sɛp]. Durations were modified using the PSOLA algorithm (Moulines and Char-
pentier 1990).

To synthesize the vowel we measured the first four formants of the vowel, its 
fundamental frequency (F0), and its intensity at four different points in time (the 
beginning and end of the vowel, the vowel center, and the point where the deriv-
ative of the concerned trajectory changes sign). We averaged over the measured 
trajectory parameters of both words to obtain values for a vowel that should 
sound midway between the vowels from [sɛp] and [stɛp], which we subsequently 
produced using the Klatt synthesizer (Klatt and Klatt 1990).

2 Stimuli for Experiment 2

The materials that were used to construct the stimuli comprised 10 tokens of each 
word; five tokens were produced within the carrier sentence: on dira [word] en-

6 To compute the intensity of the consonants, we first extracted the aperiodic component of the 
signal following the method illustrated by Coleman and Slater (2001). Then we computed the 
intensity of the aperiodic component using a sliding window of 12.5 ms. Finally, we selected the 
peak intensity value in the portion of signal that corresponds to the consonant.
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core (“I am going to say [word] again”), and five were produced in isolation. Static 
parameters (e.g., duration values) were considered separately from the trajecto-
ries (represented by time series such as in the case of F0 curves). The first group of 
parameters included the fricative, coronal closure, vowel, and bilabial closure 
duration, as well as the ratio between the intensity peak of the vowel to each con-
sonant. We then considered the trajectories of the intrinsic F0 of the vowel, and 
the first six formants and bandwidths.

For each of the two words, we created a vector of the median values of the 
static parameters observed across the tokens. We then selected the token of each 
word whose vector of parameters was closest to the vector of the median values 
for that word. We extracted the acoustic material needed to build the consonantal 
part of the stimuli from the selected token of the word [sɛp]. As for Experiment 1, 
we modified the extracted signal to sound midway between [sɛp] and [stɛp] by 
modifying the static parameter values. The set of prototypic trajectories needed to 
synthesize the vowel was deduced separately for each of the two words using a 
method proposed by Coleman and Slater (2001, to which the reader is referred for 
details). For each acoustic parameter, the trajectories from the different tokens 
were compared via dynamic time warping (Sakoe and Chiba 1978) to the median 
trajectory of all tokens. We chose the token which was most similar to the set of 
median trajectories as a prototype for the stimuli trajectories. Via this process, we 
obtained two sets of trajectories which defined the prototypes of the vowels of the 
two words. Each one of these prototypes was used as a basis for one continuum. 
The values of the static parameters and the intensity contour of the fricative were 
fixed across the stimuli. The intensity contour for the fricative was obtained by 
averaging the intensity contours of the two fricatives corresponding to the two 
selected vectors of static parameters. 

The two vowels were synthesized at 16,000 Hz by activating the resonances 
corresponding to the first eight formants of the Klatt synthesizer. The acoustic 
material necessary for the construction of [s] and [p] was extracted from the token 
of the word [sɛp] corresponding to the prototypical vector of static parameters. 
For the construction of the fricative, only the stable portion of the signal was con-
sidered and its duration was modified using PSOLA. The intensity contour was 
then substituted with the average contour described above. The duration of the 
last plosive closure was changed according to the modeled value. The intensity 
peaks of the two consonants were changed to match the desired ratio between the 
intensity of each consonant and the intensity of the vowel. Concatenating the 
acoustic chunks obtained, we produced two acoustic signals which sounded like 
cèpe or steppe depending on the duration of the closure duration.
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