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This tutorial focuses on understanding rather than simply using ANOVAs.  

 

Situating ANOVAs in the world of statistical tests 
ANOVA tests the effect of a categorical predictor variable (a so-called “fixed 
effect”, independent variable or factor) on a continuous dependent variable (what 
was measured in your study). An example of a categorical predictor would be 
“male versus female”, or condition A versus condition B. Continuous measures 
can be anything from pitch to reaction times, anything that has the property of 
being interval-scaled (e.g. a frequency of 200 Hertz is double a frequency of 100 
Hertz). 

 
The following table shows how ANOVA differs from other types of 

regression, namely in what the nature of the dependent and the independent 
variable are. 

 
‘Standard’ Regression continuous dependent measure, 

continuous predictors 
Logistic Regression categorical dependent measure, 

continuous predictors 
ANOVA continuous dependent measure, 

categorical predictors 
 

  

                                                
1 For updates and other tutorials, check my webpage www.bodowinter.com. If you have any 
suggestions, please write me an email: bodo@bodowinter.com  
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There are different kinds of ANOVAs, some of which are listed below: 
 

One-way independent one factor, each observations 
are independent 

Two-way independent two factors, each observations 
are independent 

One-way repeated measures one factor, multiple 
observations from the same 
subjects 

… … 
 
In a one-way independent ANOVA, there is only one factor with multiple 

levels (two, three, four etc.). Each observation must come from one individual 
that is not re-used in the same experiment, i.e. each observation needs to be 
independent. You might ask the question: Hey, but if there’s only one factor with 
two levels, that’s exactly like a t-test, isn’t it? For example, in an independent 
samples t-test, you would have two conditions and test whether there’s a 
difference. And yes, you would be spot on with this question as a one-way 
independent ANOVA and an independent t-test lead to exactly the same result. 
Therefore, you should use an ANOVA as soon as you have more than two 
levels…. or if you have more than two factors (e.g. two-way, three-way, four-way 
ANOVAs). 
 

In this tutorial, we will focus on the one-way independent ANOVA and in 
our example our one predictor has three levels. In using this test, we are looking 
at three groups or conditions, and we ask the question: is there a difference 
between any one of these groups that is unlikely due to chance? 

 
So, let’s get started with the basics of ANOVAs! 

 

The F-value 
At the heart of every type of ANOVA lies the F-value. Whenever the result of an 
ANOVA appears in a published research article, usually something such as the 
following is reported: 
 
 F(1,21)=6.14, p=0.02 
 
 
 
 

Journals almost always require researchers to provide the degrees of 
freedom, the F-value and the p-value… but unfortunately, many people (including 
reviewers) only look at the p-value, overlooking the degrees of freedom (“1” and 
“21” in this case) and the F-value (“6.14”). This is dangerous, because if the 
degrees of freedom are not correct, the F-value and the p-value are practically 

df1 df2 F p 
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meaningless (cf. Hurlbert, 1984). So, let’s go through each of these values and see 
what they actually mean.  
 
The F-value is actually the quotient of the following ratio: 
 
 F = Effect Variance (or “Treatment Variance”) 
  Error Variance 
 
Or, sometimes the variances in the ratio are labeled like this: 
 
 F = Between-group Variance 
  Within-group Variance 
 

Imagine you have the dataset below of average voice pitch (measured in 
Hertz) for male and female participants. 
 
 Male Participants Female Participants 
 100 Hz   190 Hz 
 85 Hz   230 Hz 
 130 Hz   200 Hz 
 

As you can see, male participants have lower voice pitch than female 
participants, but then, there’s also a lot of variation within groups. Each 
participant will have slightly different voice pitch due to physiological or 
psychological differences. These differences within the male group and within the 
female group are called “within-group variance” or “error variance”. It’s the 
variation that you can’t control for, the variation that is due to individual 
differences. 
 

Now, what you’re usually interested in is the variation that is caused by your 
experimental manipulation or your independent variable. In the above case, you 
could be interested in the difference between male and female voice pitch – for 
this, you would need the “between-group variance” or the effect variance. This is 
what you’re interested in, this is the systematic effect your study sets out to 
investigate. So, looking back at the ratio… 
 
 F = Between-group Variance 
  Within-group Variance 
 

…we can see that a large amount of between-group variance (= “effect 
variance”) will lead to a higher F ratio (because the between-group variance is in 
the numerator), and a large amount of variance that is due to chance will lead to a 
smaller F ratio (because the within-group variance is in the denominator). Now, in 
any kind of statistical testing, it is usually the case that the more random variation 
there is in a sample, the more difficult it will be to detect any consistent patterns. 
Or, if we do find consistent patterns, we will be less confident in these patterns 
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because with more random variation, the patterns could actually be due to chance. 
It is also the case that the larger the difference between conditions, the easier it 
will be to find a pattern (namely that difference) despite random variation. This 
makes sense intuitively: a needle in the haystack is more difficult to find than a 
baseball bat. We will later see that the effect variance or the between-groups 
variance reflects this difference between conditions. 

 
All of this means that the larger an F-value, the better for you to find a 

“significant” effect, a consistent pattern that is unlikely due to chance. So, the 
simple rule in most research situations is: the higher the F value, the better… 

 
This was an explanation of the F-value. Now, basically, what we’re doing 

with an ANOVA is the following: we look at how unexpected an F-value that we 
obtained in our study is. A very large F-value means that the between-group 
variance (the effect variance) exceeds the within-group variance (the error 
variance) by a substantial amount. The p-value then just gives a number to how 
likely a particular F-value is going to occur, with lower p-values indicating that 
the probability of obtaining that particular F-value is pretty low. 
 

The core of any ANOVA, the F-test 
Now, we can use the F-value that we obtained based on our data and compare it to 
a probability distribution of F-values. This probability distribution is the 
distribution of F-values that we expect to occur by chance alone, it is the 
distribution of F-values that we expect to occur under the null hypothesis (that 
there is no difference between groups or conditions). It’s important that we get a 
good feel of this distribution, so let’s plot it! [this is where you need to open R] 
 

plot(function(x)(df(x,df1=2,df2=150)),xlim=c(-
2,10)) 
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Let’s try to understand what happened up there… First, let me just say this 
plainly: We used the function df( ) to generate the probability density function for 
the F distribution with 2 and 150 degrees of freedom. A probability density 
function gives the relative likelihood of particular values, in this case, particular 
F-values. We will later talk about degrees of freedom in more detail, but for now, 
let’s recognize that different values for these degrees of freedom change the shape 
of the F-distribution. We can see this by adding another F distribution with 
slightly different degrees of freedom [you need to have the preceding plot being 
displayed in your R interface]. 
 

plot(function(x)(df(x,df1=4,df2=10)),xlim=c(-
2,10),lty="dashed",add=T) 

 
 

So, the F distribution is not just one particular distribution, it is a family of 
distributions, and the degrees of freedom are the parameters that determine the 
exact shape of a particular distribution (e.g. how far spread out it is). For each 
combination of the two degrees of freedom, there is a different F distribution. 

 
Let’s look at the F distribution graph above in somewhat more detail. The x-

axis gives you F-values. The height of the curve on the y-axis represents the 
relative likelihood of observing that F-value. The area under the line adds up to 1, 
which is the probability of observing any F-value. There are several important 
properties of the F distribution: First, the distribution is asymmetric – this is 
different from, for example, the bell-shaped normal distribution, which is a 
symmetric distribution. The F distribution starts at the point x=0, y=0. Because of 
this, an F-value of “0” will never occur, which makes sense because the F-value is 
a ratio, and ratios are always above 0… Hence, there can be no negative F-values. 
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It’s possible to get an F-value of between 0 and 1—that happens, of course, when 
the denominator (the within-group variance) is larger than the numerator (the 
between-group variance). In published research, when the authors want to 
convince you that they did not obtain a significant difference in one particular 
condition, you can often read the statement “all F < 1”. This basically means that 
the error variance exceeds the effect variance. 

 
Towards the right side of the F distribution, you can see that this distribution 

has a long tail that asymptotes out to the x-axis. By “asymptoting” towards the x-
axis, I mean that it will never reach a y-value of exactly 0 with these very high 
values. Therefore, very very high F-values such as “5657” still have some 
probability associated with them, although an increasingly smaller one. Such 
values might, for example, occur if there is an extremely strong difference 
between conditions (increasing the between-group variance, the numerator of the 
F-value), or if a dataset has an extremely low amount of individual differences 
(decreasing the within-group variance, the denominator). 
 

The command pf( ) gives us the probability of observing a value lower than 
specific F-value given two degrees of freedom. Therefore, if you take the reverse, 
1-pf( ), you get the probability of observing a value as high or higher as your F-
value2. Again, let’s not worry about the degrees of freedom for now, just look at 
the output that R gives you if you type the following two commands. The first 
argument specifies the F-value for which you want to obtain a probability value, 
df1 and df2 specify the degrees of freedom. 
 
 1-pf(4,df=1,df2=150) 

1-pf(2,df=1,df2=150) 
 

 
 
The output says that an F-value of 4 (the first argument) or higher has the 

probability of p=0.04730553, whereas an F-value of 2 or higher has the 
probability of p=0.1593715. So, an F-value of 4 is much less likely going to occur 
than an F-value of 2. From a conceptual viewpoint, this makes sense: The world is 
full of randomness, and there’s almost always bound to be small differences 
between whatever two treatments, conditions or groups we are investigating. For 
example, even if the experimental manipulation of a study actually doesn’t do 
anything to the dependent measure, we will find “apparent” differences between 

                                                
2 This is, in fact, doing a one-tailed test. With t-tests, we most often do two-tailed tests because 
differences can be ever positive or negative (they can go in both direction). A ratio such as the F-
value, however, can only assume positive values, and we’re not interested in the “lower” tail 
(towards the left of the distribution). We’re only interested in whether our F-value is unexpectedly 
high. 
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conditions that are due to individual differences or intra-individual variation (two 
means are almost never be exactly the same). Based on this reasoning, we would 
expect a lot of small F-values and the higher the F-value, the more are we going 
to be surprised about it. This is why the F distribution has high densities between 
1 and 2 and much lower densities towards the right end, its tail. 

 
To give you a visual image for what’s happening here, have a look at the 

following four graphs (no R code for these): 
 

 
 
They show the F distribution for specific degrees of freedom (df1=2 and 

df2=57, in this case). And the blue area is the area under the curve from F=1, 2, 3, 
4 or higher. The area is equal to the p-value. To be confident, we generally want 
p-values to be small, and you can see that as the F-value becomes larger, the area 
under the curve to the right of that F-value becomes smaller. Hence, larger F-
values lead to smaller areas, which entails smaller p-values. 
 

Degrees of freedom 
So far, we’ve evaded the concept of “degrees of freedom”. The easiest way to get 
a grasp of this concept is by means of an example: Let’s say you have 5 positive 
numbers that add up to 10 and assume that you already know that the numbers add 
up to ten. The first number could be any number, let’s say 2. Now, you can’t 
predict what the second number will be … because there are different 
combinations that will lead to the same total 10. For example, five numbers that 
add up to ten could be 2-1-3-1-3 or 2-1-1-1-5. But let’s say that we picked another 
2. Again, you can’t predict the next number of the sequence 2-2- because there’s 
still different combinations that add up to ten. This Spiel can go on and on until 
you reach the fourth number. Let’s say that the combination is now 2-2-1-3. The 
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last number can only be 2 in order for the whole sequence of numbers to add up to 
10. So while the first four numbers are “allowed” to vary freely, the last number is 
set (given that they have to add up to a specific number). In this particular 
example, we therefore had 4 degrees of freedom (= 5 minus 1). 

 
Now, you might ask: but in this made-up example, you already know the 

total 10 “in advance.” How could that be the case in actual research, if you don’t 
know a summary number (a mean or a sum) in advance? Why are the degrees of 
freedom n – 1 rather than just n. In the case of ANOVAs, the reason for this is 
simple: ANOVAs works by comparing variances. Now, as we will see later in 
more detail, you need the mean in order to compute the variance, therefore, the 
mean is already known before you compute the variance, and that’s why the 
variance has n – 1 rather than just n degrees of freedom. 
 

The degrees of freedom reflect the independent pieces of information in 
your sequence of numbers. The last number of the above-mentioned sequence 
wasn’t independent in that its value completely depended on the values of the 
other numbers. But the first four numbers were independent in that they could 
have had other values. 

 
 
The degrees of freedom thus reflect the true sample size: with more data 

points (e.g. more people that participate in your study), you will have more 
independent pieces of information, more stuff that is allowed to “vary freely”. 
This is actually why the degrees of freedom influence the F distribution. Because 
with “more stuff” that is allowed to vary, observing the same difference between 
conditions will have more meaning, simply because there are more reasons why it 
could have been otherwise. Let’s do some more plotting to understand this aspect 
of the degrees of freedom: 

 
plot(function(x)(df(x,df1=4,df2=5)),xlim=c(-2,10)) 
plot(function(x)(df(x,df1=4,df2=100)),xlim=c(-

2,10),add=T,lty="dashed") 
lines(x=c(3.5,3.5),y=c(0,df(3.5,df1=4,df2=100)),col

="red",lwd=4) 
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I highlighted the F-value 3.5 with a red line under the curve. You see that 

the dashed F distribution, the one with higher degrees of freedom has less density 
than the solid distribution. In general, the distribution is less dispersed with higher 
degrees of freedom. This means that an F-value of “3.5” is much more surprising 
(= much more unexpected under chance circumstances) if it is based on many 
independent observations rather than on just a few. Therefore, smaller F-values 
are more likely to be “significant” with more independent data points. Again, this 
makes sense conceptually: if you have a small sample, you might obtain a big F-
value simply because you happened to have chosen some subjects or items that 
did not vary a lot (low error variance) or that happened to exhibit a large 
difference (big effect variance). Therefore, with small datasets, it’s relatively 
easier to find big F-values (they have a higher probability). This means that for 
smaller samples, you need relatively larger F-values in order for it to count more 
towards statistical significance in a testing context. The smaller the sample, the 
higher your F-value has to be in order to reach significance. 

 
This aspect of the F distribution is one of the reasons why an F-value can 

sometimes tell you more than a p-value. Let’s say you got a pretty high F-value 
(e.g., one that is above 4), but the p-value indicates “non-significance”, it is above 
0.05. Then, a lot of people would say “oh, sad, I didn’t find a significant result” 
…. but without looking at the degrees of freedom, you cannot conclude anything 
too quickly: a high F-value might – with more data and more degrees of freedom 
– become significant. A high F-value in a small dataset indicates that within that 
dataset the effect variance well exceeds the error variance … and therefore, it is 
useful to collect more data in order to see whether this high F-value is really just 
due to chance or actually something meaningful. 
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The upshot of this: more degrees of freedom mean that you will have 
smaller p-values, more “significant” results. Let’s check this using the command 
pf( ). Remember, pf( ) gives you the probability of observing any value lower than 
the F-value you specified. So, the probability of observing an F-value as high or 
higher as the one you found would be 1-pf(). 

 
1-pf(3.5,df1=4,df2=5) 
1-pf(3.5,df1=4,df2=100) 

 
The first command is not significant at all, the second one is … even though 

you’re dealing with the same F-value in both cases. 
 
What I’ve just talked about with respect to degrees of freedom is simply a 

variant of the general rule that with larger sample sizes, you are more likely to get 
significant results. However, the data points need to be independent. The degrees 
of freedom reflect the true sample size (the sample of individual subjects, the 
sample of unique experimental stimuli) and not the total dataset. For example, if 
you have 10 responses per subject, and you collected data from 8 subjects, your 
degrees of freedom have to stay below 7 (= 8-1).  

 
Now, we’ve covered the basics (degrees of freedom, F value), and we can 

proceed to finally performing an actual ANOVA. 
 

Independent one-factor ANOVA: A work-through example 
Let’s start by constructing an adequate dataset… let’s simulate some data! Let’s 
say you were interested in whether females, males and kids have different voice 
pitches. We’ll sample four subjects in each group and measure their voice pitch in 
Hertz (= the dependent variable). We will use the rnorm( ) function to generate 
four random numbers drawn from a normal distribution with the mean 200 Hertz 
and a standard deviation of 20. This will be our simulated female data points. 
Then, we will draw four values for male subjects with the mean 120 Hertz and 
four values for the child subjects with the mean 380 (Hertz). 

 
We will save these in three vectors called “females”, “males” and “kidz” … 

and for the sake of displaying the data, let’s also put them together in a table using 
the command data.frame( ) on the three vectors that we just constructed. 
 

females = rnorm(4, mean=200, sd=20) 
males = rnorm(4, mean=120, sd=20) 
kidz = rnorm(4, mean=380, sd=20) 
pitchstudy = data.frame(females, males, kidz) 

 
If you print the object “pitchstudy”, you should see something like this. Of 

course, the actual values will be somewhat different for you because the numbers 
are generated randomly. 
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 females males kidz 
1 213.6684 107.2392 381.5930 
2 204.4267 148.6768 438.9887 
3 184.4746 107.7622 359.4772 
4 194.7927 95.1473 378.7686 

 
As we simulated the data, females have higher pitch than males, and kids 

have higher pitch than both females and males. Now, the ANOVA tests whether 
this difference between the three groups is significant, whether it is unlikely due 
to chance. 
 

Variance structure  
As was mentioned above, the heart of the ANOVA is the F-test, and the F-value is 
a ratio of two variances – the “between group” variance and the “within-group” 
variance. To get an overview of the “variance structure” of our dataset above, 
have a look at the following variance breakdown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
This graph depicts the variance structure of the data in this fictive experiment. 
The total variance “consists of” or can be subdivided into the “between-groups” 
and the “within-groups” variance. What we actually want to compare is the 
between-groups and the within-groups variance, but often, it is easier to compute 
the total variance. Because the variance is structured as in this graph, we can 
calculate the within-groups variance by subtracting the between-groups variance 
from the total variance. Here, it becomes clear why some people call the within-
group variance “residual variance”: if you subtract the between-group variance or 
your “effect variance”, then what’s left (the “residual”) is the within-group 
variance. 
 

Two ways to calculate the variance 
The variance (the statistical characterization of the everyday concept of 
“variation”) is defined as follows: 

 

 
Total Variance 

 

Between-
groups 

 

Within- 
groups 
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Variance = Sum of squares 
      Degrees of freedom 

 
The “sum of squares” is shorthand for saying the sum of squared deviations 

from the mean. There are two ways to calculate sum of squares (the numerator), 
so there are two different variance formulas. Have a look at the following 
equation: 

(𝑥 − 𝑥)!

𝑛 − 1 =
𝑥! − ( 𝑥)!

𝑛
𝑛 − 1  

 
The first method for calculating the sum of squares works by subtracting the 

mean of a set of numbers from each of the numbers in the set, squaring this 
difference3, and summing all the differences together. In case you don’t know, 

 is simply the sign for the sum. And we commonly represent data by “x” and 
the mean by “x bar”. Then everything is divided by the degrees of freedom (n 
minus 1). So the sum of squares are in the numerator, the degrees of freedom in 
the denominator. 

The first way of calculating the variance actually quite well captures what 
“sum of squares” actually means: the sum of squared deviations from the mean. 
The formula on the right side of the equation is a bit different. Here, all squared 
values are added together together and then the squared total is subtracted. Then, 
everything is divided by the degrees of freedom to give the variance. 
 

Check whether both formulas actually lead to the same result by applying it 
to the vector of female data that we constructed. 

 
sum((females-mean(females))^2) 
sum(females^2)-(sum(females)^2)/4 
 
Both commands give you the same number. 
 

 
The reason why I bother you with both of these formulas is because the first 

one actually is conceptually easier to grasp (it makes sense that variation is 
measured by how much individual data points deviate from the mean), but the 
second one is actually the one that is used in a number of textbooks and, as you 
will see later, the second one has some computational advantages: with the second 
formula, we can simply calculate the sum of squares with sum(vector^2) of 
whatever part of the data we’re looking at, and then we can subtract the so-called 
“correction factor” (sum(vector)^2/n) which is going to remain constant for 
the whole ANOVA computation. The correction factor is simply the squared total 

                                                
3 Many people are confused about why you would want to square this difference. Squaring has the 
effect of getting rid of the sign (all values are made positive). There are some mathematical 
reasons why squaring is better than, say, taking the absolute value. 
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in the right side of the above equation, the part that is subtracted from the sum of 
squared values. 
 

Let’s start by calculating the total variance. To do this easily in R, we’ll first 
put all the three groups together in one vector. 

 
bigvector = c(females, males, kidz) 
 
Then, we’ll calculate the correction factor that we’ll use again and again. 
 
CF = (sum(bigvector))^2/length(bigvector) 
 
Then we calculate the so-called “total sum of squares” (the numerator of the 

variance formula). 
 
total.ss = sum(bigvector^2)-CF 
 
Now that we’ve calculated the total sum of squares, let’s calculate the 

between group sum of squares. This is done by summing each column, squaring it 
and dividing it by the number of cells within each column. Add these squared 
group totals together and subtract by the correction factor to get “between.ss”. 
This step might seem a little bit awkward, but you can think of it this way: each 
column represents a level of the factor “group” (female, male or kidz), and each 
level contributes a certain fixed amount of variance – when we add these together 
and subtract the correction factor, you get the “between-group sum of squares”. 
 
 

between.ss = (sum(females)^2)/4 + (sum(males)^2)/4 
+ (sum(kidz)^2)/4 - CF 

 
The variance breakdown shows how we can calculate “within.ss”, namely 

by subtracting “between.ss” from “total.ss”. 
 

within.ss = total.ss - between.ss 
 

Finally, to finish our calculation of the variance, we need to calculate the 
denominators for all the variances; the denominators will be the respective 
degrees of freedom. These can be broken down the same way the variance can be 
broken down: 

 
 
 
 
 
 
 
 

 
Total df 

 

Between-
groups df 

 

Within- 
groups df 
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The total degrees of freedom is simply the number of all data points 

(=length(bigvector)) minus 1. 
 

df.total = length(bigvector)-1 
 

This df value should be 11, because we have data from 12 subjects in total. 
The degrees of freedom for the between-groups variance is the number of 
columns (= the number of groups) minus one. 
 

df.between = ncol(pitchstudy)-1 
 

Finally, we can arrive at the within-group df by subtraction (have another 
look at the df breakdown): the within-groups degrees of freedom is the total 
degrees of freedom minus the between-groups degrees of freedom. 

 
df.within = df.total-df.between 

 
This is 9, the result of subtracting 2 (between df) from 11 (total df). 

However, there’s another way to think about the within-groups degrees of 
freedom. In the female group, you have 4 participants, so the degrees of freedom 
for the female group is 3. Likewise, it is 3 for males and 3 for kidz. If you add this 
up, you get 9, the within-groups degrees of freedom. 

 
Now, we can actually finish our formula to arrive at the variance estimate. 

This is often called “mean squares” (= the sum of squares divided by the 
respective degrees of freedom). 

 
between.ms = between.ss/df.between 
within.ms = within.ss/df.within 

 
Finally, the F-value is the ratio of the between-group mean squares and the 

within-group mean squares. 
 

F.value = between.ms/within.ms 
 

Now we’re almost finished. The last thing to do is to see how unlikely the F-
value that we obtained is given the degrees of freedom that we have. This is 
actually the only part that is actually “inferential statistics” and not just 
descriptive statistics. What we’re doing here is looking at the theoretical F 
distribution for the degrees of freedom 2 (the between-group df) and 9 (the 
within-group df)… and then we’re trying to locate our F value on this distribution. 

 
1-pf(F.value,2,9) 
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The p-value that you get should be well below 0.05 … I emphasize should 

because there is a probability (although a very low one) that you will get a non-
significant result: remember, we generated a set of random numbers and even 
with very different means, the variation that we simulated allow for a dataset that 
has no statistically detectable difference between the conditions. But, given the 
big differences in means and the relatively small standard deviations that we 
specified, I suspect that this won’t happen to you. 

 

Now, the same thing, the “R way” 
The way we calculated the one-way independent samples ANOVA above, we 
would never do it in actual research practice. It’s good to do it once for 
educational purposes because it shows you the inner workings of the ANOVA, 
but for practical reasons you would probably take one of the prefab ANOVA 
functions that are already provided with R. 

 
However, to be able to use one of these functions, we need to have a table 

with a different structure. In the new table, each row will represent data from one 
subject, so each row actually represents an independent data point. This is how 
the end result will look like: 
 

  subjects groups bigvector 
1 1 female 213.6684 
2 2 female 204.4267 
3 3 female 184.4746 
4 4 female 194.7927 
5 5 male 107.2392 
6 6 male 148.6768 
7 7 male 107.7622 
8 8 male 95.1473 
9 9 kidz 381.5930 
10 10 kidz 438.9887 
11 11 kidz 359.4772 
12 12 kidz 378.7686 

 
The first step is to make a vector “groups” where we have labels for each 

group. 
 

groups = 
c(rep("female",4),rep("male",4),rep("kidz",4)) 

 
This command repeats the character string “female” four times, then “male” 

four times and “kidz” four times – this is concatenated by the c( ) operator. Now, 
let’s put this new vector together with the actual data into a data frame. For this, 
we will overwrite the old data frame that we constructed, “pitchstudy”. 
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pitchstudy = data.frame(c(1:12),groups,bigvector) 

 
With the command c(1:12) we added another column that contains the 

numbers 1 to 12 – let this represent IDs for our twelve subjects. Let’s rename the 
columns, so that the data frame looks more beautiful: 

 
colnames(pitchstudy) = 
c("subjects","groups","bigvector") 

 
Now, if you display the data frame “pitchstudy”, you should pretty much see 

the same thing as in the table above. To calculate an ANOVA, simply use the 
aov( ) command in conjunction with the summary( ) command: 

 
summary(aov(bigvector ~ groups + Error(subjects), 

data=pitchstudy)) 
 

The first argument of the aov( ) is a formula that reads as the following: “try 
to predict bigvector with the fixed effect groups and the random factor subjects”. 
The “Error(subjects)” part is the part that tells the aov( ) function that it should 
expect random variation from each participant. 

 
However, if you compare the results of the aov( ) output to the F value and 

the p-value above, you see that the results are not the same!! What happened? 
 
Have a look at the data frame: 

 
summary(pitchstudy) 
 
R tries to calculate the “mean and median” of the subject column – this 

means that it treats this column as numeric. You can check how R treats this 
vector with the class( ) command. 

 
class(pitchstudy$subjects) 
 
It should say “integer”. So you need to recode it as “factor”: 

 
pitchstudy$subjects= as.factor(pitchstudy$subjects) 

 
Now, rerun the aov( ) command above, and this time, you should get the 

same results as in your hand computation. 
 
This is how you report the results: 
 
“We performed a one-way independent samples ANOVA with the fixed 

factor Group (three levels: females, males, children) and the random factor 
Subjects. There was a significant effect of Group (F(2,9)= 172.98, p<0.0001).” 
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Hopefully by now, you will have a much better understanding of what 

“(F(2,9)= 172.98, p<0.0001)” actually means. The first degrees of freedom are the 
degrees of freedom that are associated with the numerator of the F ratio (between 
df, or effect df), the second degrees of freedom are associated with the 
denominator (within df, “residual” or error df). Finally, the p-value gives you the 
probability of observing the F value that you obtained – given the degrees of 
freedom that determine the shape of the theoretical F distribution on which you 
try to locate your F value.  
 

Interpreting the result 
What we’ve done so far only tells you that the factor “Group” plays a role. You 
can’t make a claim yet about which groups differ with respect to each other, you 
can only say that there is an overall difference between groups. To assess where 
exactly the difference lies (e.g. between females and males or between males and 
children), you would need to do pair wise comparisons using, e.g. t-tests. 

 
So, you might wonder: Hey, if I can use t-tests to look at the difference 

between pairs (females-males, females-children, males-children) – why didn’t we 
do this to begin with? The reason is that with each statistical test that you perform, 
there is a probability that you find a statistically significant effect that is due to 
chance – this is expected to occur in 5% of all cases. By performing many tests, 
you greatly increase the chances of finding at least one statistically significant 
result in your data that, in fact, is a chance result. Therefore, the ANOVA is the 
preferred approach to the data above, because the so-called “study-wide error rate” 
is controlled for: by adopting a 5% significance level, there is an overall 5% 
chance of finding a significant effect of the factor Group that is actually spurious. 
And this 5% of uncertainty is (by convention) an accepted degree of uncertainty. 

 
If you are interested in differences between specific groups (= specific levels 

of the factor “Group”), then, you would have to perform post-hoc comparisons 
and delve into the issue of corrections for multiple comparisons. This is quite a 
big topic in and of itself and will therefore not be covered in this text. 

 
In any way, I hope that this tutorial was successful in making you familiar 

with the F ratio, the F distribution, degrees of freedom and ANOVA. 
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